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Tune Shifts Caused by Horizontal Closed. Orbit
Deviations in Sextupoles

I. Introduction

One of the uncomfortable features of the Chasman-Green lattice is

that the chromaticity-correcting sextupoles are all very strong compared with

those in the FOOD-type lattice. Because of their strengths, when their

arrangement creates certai n harmoni c components, the dynami c aperture is

severely reduced and one is forced to add more sextupoles to eliminate harmful

harmonic components. In the 7-GeV ring, four sextupoles are planned in each

cell for this purpose in addition to three per cell for controlling

chromat i c it i es.

1. harmonic sextupoles

51 (two/cell)

52 (two/cell)

(B"i/Bp) in (meters)-2

1.902

-3.696

2. chromaticity sextupoles

So (two/cell)

SF (one/cell)

-4.266

3.960

It is well-known that vertical closed orbit deviations in sextupoles

effectively create skew auadrupole field which enhances the linear horizontal-

vertical coupling of betatron motion. Horizontal orbit deviations, on the

other hand, create a shift in tunes in both transverse directions. Since the

shift will be coherent, i.e., common to all particles in a beam, it should not

be serious as long as tunes can be readjusted. During the commissioning,

sextupoles are expected to be all off until a good closed orbit is
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established. The problem is then reduced to how well one should align the

position monitor relative to the field center of adjacent sextupole magnet.

Duri ng the course of des i gn stud i es, S. Kramer has made many

computer runs to investigate tune shifts resulting from horizontal orbit

deviations in sextupoles.1 Recently, W. Chou explained how to estimate the

expected rms value of tune shifts when closed orbit deviations are caused

exclusively by horizontal misalignment of quadrupoles.2 He points out that,

under such a condition, the deviations in sextupoles are highly correlated to

each other so that the statistical averaging must be over the random

quadrupole misalignments and not over the (not-at-all random) orbit deviations

in sextupoles. He has demonstrated that the analytical prediction of the rms

tune shift agrees fairly well with numerical results obtained by S. Kramer and

by Y. Jin.

A feature in these numerical results that has been noticed by

Kramer remains unexplained in the analysis by Chou who states that"

these programs give a finite average tune shift ßV in addition to an rms (ßV)

18 To be sure, only twenty-four random samples are cited in his report

and the values of ~ are rather small, ranging from -0.007 to -0.058

horizontally and from 0.009 to 0.017 vertically. According to Kramer,

however, this small but finite average tune shift persists even with many more

random samples. An interesting observation by him is that the average is

definitely rel ated to the dependence of tunes on the betatron osci 11 ation

ampl itudes (or, equivalently. the transverse emittances). Kramer says some

people have even cast doubts on the reliability of computer programs because

of the seemingly remote (if any) connection.

Thi s note is an "attempt" to expl ai n the connection at 1 east

qualitatively. It is no more than an attempt since the explanation is not yet
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quantitative and it may even be somewhat inconsistent. One by-product of this

work is the numerical evaluation of amplitude-dependence of tunes in the

second order of sextupole strength. There are three coefficients and they are

given in the 1 atest CDR. 3 The est imate given in thi s note agrees very we 11

with the CDR result for one (main) coefficient but disagrees for the other

two. This is the case either with or without harmonic sextupoles S1 and S2.

Explicit analytical expressions used for the estimate are given, both in

closed forms and as infinite series in terms of harmonic components. It is

hoped that this note will be of some help to those who may be interested in

pursuing the questions raised here.

II. Tune and Emittance: Analytical Results

By now, the second-order sextupo 1 e effects are common knowl edge but

the analytical expressions are not always presented in convenient forms.

A 1 though no standard forms that are accepted by everyone as such

exist, there are two ways to express the ampl itude dependence of tunes which

arises in the second order of sextupole strength, one in closed forms and the

other as infinite series. For most numerical purposes, the closed forms are

naturally more convenient but the infinite series in terms of harmonic

components can show more clearly "what is going on". That these two entirely

different expressions are mathematically equivalent has been shown explicitly

by K. Y. Ng.4 The closed forms cited in his report contain the so-called

distortion functions that have been defined by Tom Collins in connection with

the distortion of beam shape in phase space.5 Forms given below intentionally

avoid the use of distortion functions for those who are not famil iar with the

special symbols.
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t:\)x == XSx + ZSy; t:Vy == YSy + ZSx

where ex, £y, = hûrizûntal and vertical beam emittancesø

X ==-0/( (128 1T sin(1Tv )); ¿ sk s. cos( Ii/ (k) - i/ (j) Ix J x x
-11/(1281T sin(31Tv )); ¿ sk s. cos(31i/(k) - i/(j)x J x x

- 1TV )
x

I - 31íVx); (2 )

Z =11/(32 1T sin(lTv ))J ¿ sk s. cos( Ii/ (k) - i/ (j) I - lTV )x J x x x
-11/64 1T sin(1Tv ))J ¿ š š cos( Ii/ (k) - i/ (j) I - 1TV ).t k j t t t'

Y =-0/(32 ir siri(1Tv ))J ¿ šk š. cos(¡i/ (k) - i/ (j) i - 'tV )x J x x x
+11/(1281T sin(1Tvt)); ¿ šk šj COS(Ii/t(k) - i/t(j) I - 1TVt).

(3 )

(4 )

i/x, i/y = betatron phase angles (0 to 2ir \)x,y),

i/t = 2iJy t i/x

V:t = 2vy t Vx

(S3/2) (Bui/Bp).x k k' Sk = (/ß Sy)k (Biii/Bp)kSk =

In all these formulas, double summations should be

N N
¿ ¿; N = total number of sextupoles in the ring.
k=l j=1

For the 7-GeV APS ring, the summation over (j) should be for all (7x40=280)

sextupoles but the summation over (k) can be replaced by 40 times summation

over seven sextupoles in one cell. In the above expressions for X, Y and Z,

the terms related to the orbit distortions are clearly the first of two lines

wi th the fami 1 i ar express ion
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cos( Iw (k) - i) (j) I - 'IV )!sin(1TV )'I'X 'x I X" "'\ Xl

Expressions for X, Y and Z in terms of harmonic components are given

in Ref. 6, and only the one for X is given below.

A2 A23m
X = 54 I ~ + 18 Im-v m-3vm x m x (5 )

where the summation is for m = _00 to +0. Harmonic components Alm and A3m are

given by

AIm = (1 /4 8'I) I I s k ex p ( i ( i) x (k) - v x 8 k + m8 k ) J I ,
k

(6 )

A3m = (1/48'I) II Sk exp(i(3i)x (k) - 3vx8k + m8k)JI
k

(7)

Summations over (k) are for all sextupoles in the ring but they are equal to

40x(summations over seven sextupoles in a cell). Because of the mirror

symmetry of lattice, both AIm and A3m are real. Moreover, they are all zero

except for those with m = 0, t40, t80, etc. The connection to the orbit

deviations in sextupoles comes from the fact that, for the 7-GeV ring, the

term with Ai 40 is the most important in (5); of all possible values of m, 40,

is the closest to Vx = 35.216.

Numerical values of coefficients X, Y and Z can be found easily from

Eq. (2) through Eq. (4) once the lattice and sextupoles are specified. In
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order to compare with results given in the CDR, tune shifts are expressed as a

funct i on of Nx and Ny, keepi ng in mi nd tha t

EX:: (8xio-9 m) x N~ and Ey :: (4xlO-9 m) x N; (8 )

1. Chromat i city-correct i ng sextupol es only (5D and SF)

/:v :: 2.85x10-4 N2 +0.29xl0-4 N2x x Y

!:V :: O.57x10-4 N? + O.55xlO-4 N2
Y x y

From COR, p. ILl-13,

!:v x :: 2.87 xlO-4 N2 + O.60xlO-4 N2x y

!:v y :: 1.20xlO-4 N~ + O.39xl0-4 N2y

2. With harmonic sextupoles (SO, SF' S1, S2 )

!:v x :: 6.00xl-7 N2 - O.74x10-4 N2x Y

!:v y :: -1 48xl -4 N2 + O.50x10-4 N2G i'x ' y

From CDR, p. ILI-17,

!:v x :: 0.00 N2 + 0.72xlO-5 N2x y

!:v y :: 1.44x10-5 N2 + 0.98xlO-5 N.~x

With or without harmoni c se xtupo 1 es, the aqre€ment on d(!:vx)/d(N~) is very

good but the di sagreement s for other coefficients à.re not triviaL.
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Independent checks of Eq. (2) through Eq. (4) together with their numerical

re-evaluations are desirable in order to remove any uncertainties.

It should be noted here that the ampl itude dependence of tunes

discussed so far is based on perturbation in its lowest order (which is

second-order in sextupole strength). If tunes are found as a function of

amplitudes through numerical beam tracking and Fourier transform of its

results, the dependence may not agree with the lowest-order analytical

estimates presented above, especially for large amplitudes approaching the

stab 1 e boundary of some resonance.

III. Possible Source of Average Tune Shift

If 1 inear coupl ing of transverse betatron motions is introduced

through the effective skew quadrupol e component, one must deal with two

eigentunes instead of Vx and vy and this complicates the analysis. It is

therefore assumed here that closed orbit deviations in sextupoles are in the

horizontal direction only. This is not unphysical; one can in principle (if

not in practice) establish a purely horizontal motion as long as the field is

"normal" (i .e., no skew component). Convention for suffix used throughout

this section is:

quadrupoles = i, j, k (10x40 in the ring)

sextupoles = m, n (3x40 or 7x40 in the ring)

Since horizontal direction alone is considered, suffix to distinguish

horizontal from vertical will be omitted.

Orbit deviation (~x)m in the m-th sextupole is caused predominantly

by ô-function kicks at misaligned quadrupoles but there may be similar kicks
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by sextupoles contributing to (~x)m. One writes, for the normalized deviation

E;m :: (~x)mNßm'

Sm :: r Amil'i + I Bmns~1 n (9 )

with

Ami :: (1/2sin(~v)) 9i cost IWm - wnl - ~v) (10)

Bmrl :: (1/2sin(~v))(-sn/2)cos(lwm -wnl .. ~v) (11 )

9 i :: !B(B ¡i/sp) Sn :: (ßn)3/2 (ßlI£/Bp). . n (12 )

In Eq. (9), for small orbit deviations, one may use the lowest-order

express ion

E;~ :: ~ Anj tij ~ Ank tik (13 )

The tune shift arising from the m-th sextupole is

(tiv) :: b E;m m m (14 )

with bm:: (sm/4TI). In the lowest order, contributions from many sextupoles

are simply added (M :: total number of sextupole magnets in the ring),

tiv :: ¿ bm tm. :: ¿ ci ti i + ¿ dn ~ Anj ti j ¿ Ank tikm i i n J k (15 )

where

C i :: ~ b m Am ian d d n :: .~ b m B m n (16 )
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Remembering that (~i' ~j' ~k) are all random misalignments of

quadrupoles, one can perform average over many sample caseSe The average tune

shift is

TV = rI dn I An 2Jo)L12 (17)n j
where ~ is the rms value of quadrupole misalignments ~i. From Eq. (10),

On == ¿ A~j

j
= (i/4sin2-(1Tv)) ¿ g1 cos2(liJn - iJjl - 1TV)

j
(18 )

In evaluating this quantity for a given sextupole (n), the summation over (j)

must be for all 400 quadrupoles in the ring. One then finds that On is

practically independent of (n),

287 m-1 ( On -( 294 m-1

It is thus allowed to use Li the average value of On' in Eq. (17),

~V .. ~2 1) ¿ dn
n

= -t ~ 21)/( 161T sin -(1T V) )) ¿
m, n

s s cos(liJ - iJ 1- 1TV)m n m n (19 )

which is, aside from trivial factors, precisely what one found as a part of

d(L1Vx)/d(N~L the first line of Eq. (2).

If Eq. (19) is taken as something "quantitative", the average tune

shift is +0.01 when all sextupoles are used with L1 = lx10-4 m. Compared with
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the numerical results cited in Ref. 2, the magnitude is not inconsistent but

the sign is!

There are at least two shortcominqs in the treatment here if its

results are to be considered "quantitative" so that they can be compared with

results from various computer programs. The first is the ever-present

question of coupled:: uncoupled motions and their tunes. In handling results

from any computer program~ one must be certain what quantities are calculated

as "tunell. Of course, the uncertainty can be easi ly el iminateå by removinq

vertical orbit deviations in sextupoles. The second is more difficult and

more serious in nature. In estimating the average tune shift Ev, contribu-

tions from many sextupoles are simply added in Eq. (15). This is not really

consistent. Since '" given in Eq. (17) is proportional to /:2, one must

include in Eq. (15) contributions coming from many pairs ofsextupoles having

the form a: ~m ~n which is proportional to /:2 also. Unless this defect is

taken care of ~ the argument presented in thi s note cannot be taken as the

right explanation of the origin of average tune shift.
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